Course Listings

all > UGRD > MATH > MATH 455

An Introduction to Statistical Machine Learning

Course #: MATH 455

Description:
This course will provide an introduction to methods in statistical machine learning that are commonly used to extract important patterns and information from data. Topics include: supervised and unsupervised learning algorithms such as generalized linear models for regression and classification, support vector machines, random forests, k-means clustering, principal component analysis, and the basics of neural networks. Model selection, cross-validation, regularization, and statistical model assessment will also be discussed. The topics and their applications will be illustrated using the statistical programming language R in a practical, example/project oriented manner.

Pre Requisites: Pre-requisite: MATH 345 and MATH 260 and CS 110 or permission of instructor

Offered in:

TBA